Log posterior functions¶
Log posterior functions for transit modelling and parameter estimation.
A log posterior function (LPF) class creates a basis for Bayesian parameter estimation from transit light curves. In PyTransit, LPFs are a bit more than what the name implies. An LPF stores the observations, model priors, etc. It also contains methods for posterior optimisation and MCMC sampling.
-
class
pytransit.lpf.
BaseLPF
(name: str, passbands: Union[Sequence[str], str], times: Optional[Sequence[numpy.ndarray]] = None, fluxes: Optional[Sequence[numpy.ndarray]] = None, errors: Optional[Sequence[numpy.ndarray]] = None, pbids: Optional[Sequence[int]] = None, covariates: Optional[Sequence[numpy.ndarray]] = None, wnids: Optional[Sequence[int]] = None, tm: Optional[pytransit.models.transitmodel.TransitModel] = None, nsamples: Union[Sequence[int], int] = 1, exptimes: Union[Sequence[float], float] = 0.0, init_data: bool = True, result_dir: Optional[pathlib.Path] = None, tref: float = 0.0, lnlikelihood: str = 'wn')[source]¶ -
add_as_prior
(mean: float, std: float) → None[source]¶ Add a normal prior on the scaled semi-major axis
.
Parameters:
-
add_ldtk_prior
(teff: tuple, logg: tuple, z: tuple, passbands: tuple, uncertainty_multiplier: float = 3, **kwargs) → None[source]¶ Add a LDTk-based prior on the limb darkening.
Parameters: - teff –
- logg –
- z –
- passbands –
- uncertainty_multiplier –
-
add_t14_prior
(mean: float, std: float) → None[source]¶ Add a normal prior on the transit duration.
Parameters:
-
lnlikelihood
(pvp)[source]¶ Log likelihood for a 1D or 2D array of model parameters.
Parameters: pvp (ndarray) – Either a 1D parameter vector or a 2D parameter array. Returns: Return type: Log likelihood for the given parameter vector(s)
-
plot_light_curves
(method='de', ncol: int = 3, width: Optional[float] = None, planet: int = 1, max_samples: int = 1000, figsize=None, data_alpha=0.5, ylim=None)[source]¶
-