Source code for pytransit.models.general

#  PyTransit: fast and easy exoplanet transit modelling in Python.
#  Copyright (C) 2010-2020  Hannu Parviainen
#
#  This program is free software: you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation, either version 3 of the License, or
#  (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program.  If not, see <https://www.gnu.org/licenses/>.
#
#  This program is free software: you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation, either version 3 of the License, or
#  (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program.  If not, see <https://www.gnu.org/licenses/>.
from typing import Union, Optional, List

from numpy import ndarray, array, squeeze, atleast_2d, atleast_1d, zeros, asarray

from .numba.general_nb import init_arrays, general_model_s, general_model_v, general_model_pv

from .transitmodel import TransitModel

__all__ = ['GeneralModel']

[docs]class GeneralModel(TransitModel): """Transit model with general limb darkening (Giménez, A&A 450, 1231–1237, 2006). Transit model with general limb darkening (Giménez, A&A 450, 1231–1237, 2006) with optimizations described in Parviainen (MNRAS 450, 3233–3238, 2015). The general limb darkening law is .. math:: I(\mu) = I(1) (1 - \sum_{n=1}^N u_n(1-\mu^n) ) """
[docs] def __init__(self, npol: int = 50, nldc: int = 2, mode: int = 0): if npol < 1: raise ValueError(f"`npol` has to be positive, now {npol}") if nldc <= 0: raise ValueError(f"`nldc` cannot be negative, now {nldc}") if mode not in (0,1): raise ValueError("`mode` has to be either 0 (normal) or 1 (transmission spectroscopy).") super().__init__() self.npol = npol self.nldc = nldc self.mode = mode self._anm, self._avl, self._ajd, self._aje = init_arrays(npol, nldc)
[docs] def evaluate(self, k: Union[float, ndarray], ldc: Union[ndarray, List], t0: Union[float, ndarray], p: Union[float, ndarray], a: Union[float, ndarray], i: Union[float, ndarray], e: Optional[Union[float, ndarray]] = None, w: Optional[Union[float, ndarray]] = None, copy: bool = True) -> ndarray: """Evaluate the transit model for a set of scalar or vector parameters. Parameters ---------- k Radius ratio(s) either as a single float, 1D vector, or 2D array. ldc Limb darkening coefficients as a 1D or 2D array. t0 Transit center(s) as a float or a 1D vector. p Orbital period(s) as a float or a 1D vector. a Orbital semi-major axis (axes) divided by the stellar radius as a float or a 1D vector. i Orbital inclination(s) as a float or a 1D vector. e : optional Orbital eccentricity as a float or a 1D vector. w : optional Argument of periastron as a float or a 1D vector. Notes ----- The model can be evaluated either for one set of parameters or for many sets of parameters simultaneously. In the first case, the orbital parameters should all be given as floats. In the second case, the orbital parameters should be given as a 1D array-like. Returns ------- ndarray Modelled flux either as a 1D or 2D ndarray. """ # Scalar parameters branch # ------------------------ if isinstance(t0, float): if e is None: e, w = 0.0, 0.0 return self.evaluate_ps(k, ldc, t0, p, a, i, e, w, copy) # Parameter population branch # --------------------------- else: ldc = atleast_2d(ldc) k, t0, p, a, i = asarray(k), asarray(t0), asarray(p), asarray(a), asarray(i) if k.ndim == 1: k = k.reshape((k.size,1)) npv = t0.size if e is None: e, w = zeros(npv), zeros(npv) flux = general_model_v(self.time, k, t0, p, a, i, e, w, ldc, self.mode, self.lcids, self.pbids, self.nsamples, self.exptimes, self.npb, self.npol, self.nldc, self._es, self._ms, self._tae, self._anm, self._avl, self._ajd, self._aje) return squeeze(flux)
[docs] def evaluate_ps(self, k: Union[float, ndarray], ldc: ndarray, t0: float, p: float, a: float, i: float, e: float = 0.0, w: float = 0.0, copy: bool = True) -> ndarray: """Evaluate the transit model for a set of scalar parameters. Parameters ---------- k : array-like Radius ratio(s) either as a single float or an 1D array. ldc : array-like Limb darkening coefficients as a 1D array. t0 : float Transit center as a float. p : float Orbital period as a float. a : float Orbital semi-major axis divided by the stellar radius as a float. i : float Orbital inclination(s) as a float. e : float, optional Orbital eccentricity as a float. w : float, optional Argument of periastron as a float. Notes ----- This version of the `evaluate` method is optimized for calculating a single transit model (such as when using a local optimizer). If you want to evaluate the model for a large number of parameters simultaneously, use either `evaluate` or `evaluate_pv`. Returns ------- ndarray Modelled flux as a 1D ndarray. """ ldc = asarray(ldc) k = asarray(k) if self.time is None: raise ValueError("Need to set the data before calling the transit model.") if ldc.size != self.nldc * self.npb: raise ValueError("The quadratic model needs two limb darkening coefficients per passband") flux = general_model_s(self.time, k, t0, p, a, i, e, w, ldc, self.mode, self.lcids, self.pbids, self.nsamples, self.exptimes, self.npb, self.npol, self.nldc, self._es, self._ms, self._tae, self._anm, self._avl, self._ajd, self._aje) return squeeze(flux)
[docs] def evaluate_pv(self, pvp: ndarray, ldc: ndarray, copy: bool = True) -> ndarray: """Evaluate the transit model for a 2D parameter array. Parameters ---------- pvp: ndarray Parameter array with a shape `(npv, npar)` where `npv` is the number of parameter vectors, and each row contains a set of parameters `[k, t0, p, a, i, e, w]`. The radius ratios can also be given per passband, in which case the row should be structured as `[k_0, k_1, k_2, ..., k_npb, t0, p, a, i, e, w]`. ldc: ndarray Limb darkening coefficient array with shape `(npv, 2*npb)`, where `npv` is the number of parameter vectors and `npb` is the number of passbands. Notes ----- This version of the `evaluate` method is optimized for calculating several models in parallel, such as when using *emcee* for MCMC sampling. Returns ------- ndarray Modelled flux either as a 1D or 2D ndarray. """ ldc = asarray(ldc) pvp = asarray(pvp) if self.time is None: raise ValueError("Need to set the data before calling the transit model.") flux = general_model_pv(self.time, pvp, ldc, self.mode, self.lcids, self.pbids, self.nsamples, self.exptimes, self.npb, self.npol, self.nldc, self._es, self._ms, self._tae, self._anm, self._avl, self._ajd, self._aje) return squeeze(flux)
def to_opencl(self): """Creates an OpenCL clone (`QuadraticModelCL`) of the transit model. Returns ------- QuadraticModelCL """ from .ma_quadratic_cl import QuadraticModelCL tm = QuadraticModelCL(klims=self.klims) tm.set_data(self.time, self.lcids, self.pbids, self.nsamples, self.exptimes) return tm