

PyTransit

Welcome to PyTransit documentation! PyTransit is a package for exoplanet transit light curve modelling
that offers optimised CPU and GPU implementations of exoplanet transit models with a unified interface. Transit model
evaluation is trivial for simple use-cases, such as homogeneous light curves observed in a single passband, but also
straightforward for more complex use-cases, such as when dealing with heterogeneous light curves containing transits
observed in different passbands and different instruments, or with transmission spectroscopy.

The development of PyTransit began in 2009 to fill the need for a fast and reliable
exoplanet transit modelling toolkit for Python. Since then, PyTransit has gone through several
iterations, always thriving to be the fastest and most versatile exoplanet transit modelling tool for Python.

PyTransit v1.0 was described in Parviainen (2015), which also details the model-specific optimisations and model
performance. This version relied heavily on Fortran code, which made the installation complicated in non-Linux
systems. PyTransit v2 replaces all the Fortran routines with numba-accelerated python routines, and
aims to implement all the major functionality also in OpenCL.

While PyTransit is aimed to work as a library offering tools for customised transit analysis codes, it
can also be used directly for transit modelling and parameter estimation.

Example

The transit model initialization is straightforward. At its simplest, the model takes an array the mid-exposure times,

from pytransit import QuadraticModel

tm = QuadraticModel()
tm.set_data(times)

after which it is ready to be evaluated

tm.evaluate(k=0.1, ldc=[0.2, 0.1], t0=0.0, p=1.0, a=3.0, i=0.5*pi)

[image: _images/basic_example_1.svg]To complicate the situation a bit, we can consider a case where we want to model several transits observed in different
passbands. The stellar limb darkening varies from passband to passband, so we need to give a set of limb darkening
coefficients for each passband, and we may also want to allow the radius ratio to vary from passband to passband.
Now, we will only need to initialise the model with per-exposure light curve indices (lcids) and per-light-curve
passband indices (pbids) (don’t worry, these are simple integer arrays), after which we are ready to evaluate the
model with passband-dependent radius ratio and limb darkening

tm.set_data(times, lcids=lcids, pbids=pbids)
tm.evaluate(k=[0.10, 0.12], ldc=[[0.2, 0.1, 0.5, 0.1]], t0=0.0, p=1.0, a=3.0, i=0.5*pi)

[image: _images/basic_example_2.svg]We made both the radius ratio and limb darkening passband-dependent in the example above, but we could just as well
evaluate the model with a single scalar radius ratio (as in the first example), in which case only the limb darkening
would be passband-dependent.

We may often want to evaluate the model for a large set of parameters at the same time (such as when doing MCMC
sampling with emcee, or using some other population-based sampling or minimization method). Give evaluate an array
of parameters

tm.evaluate(k=[[0.10, 0.12], [0.11, 0.13]],
 ldc=[[0.2, 0.1, 0.5, 0.1],[0.4, 0.2, 0.75, 0.1]],
 t0=[0.0, 0.01], p=[1, 1], a=[3.0, 2.9], i=[.5*pi, .5*pi])

[image: _images/basic_example_3.svg]and PyTransit will calculate the models for the whole parameter set in parallel.

All the models come in CPU and GPU (OpenCL) versions. OpenCL versions can be 10-20 times faster to evaluate
than the CPU versions (depending on the GPU), and switching to use the GPU is as simple as just importing an CL version
of the model, which will work identically to the CPU version

from pytransit import QuadraticModelCL

The examples use a transit model with quadratic limb darkening by Mandel & Agol, but all the models follow the same API,
so when you learn to use one, you can use all of them. Finally, these examples show just the use of the main evaluate
method, but the models have also more optimized evaluation methods for specific use-cases, and the package comes with
utilities for specialized analyses.

Contents

	Installation

	Quickstart
	Basic transit model evaluation

	Transit Models
	Transit model interface

	Model initialisation

	Data setup
	Basics

	Heterogeneous light curves

	Multiple passbands

	Supersampling

	Advanced example

	Model evaluation

	OpenCL

	Implemented transit models
	Road Runner model

	Uniform model

	Quadratic model

	Oblate star model

	Power-2 model

	General model

	Chromosphere model

	Log posterior functions
	Main LPFs

	Mixin classes

	Advanced topics
	Supersampling

	Heterogeneous time series

	API
	Transit models
	Road Runner model

	Uniform model

	OpenCL Uniform model

	Quadratic model

	OpenCL Quadratic model

	Oblate star model

	General model

	QPower2 model

	Chromosphere model

	Log posterior functions

	pytransit.contamination

	Phase curves

Indices and tables

	Index

	Module Index

	Search Page

Installation

Pytransit can be installed from PyPI

pip install pytransit

or by cloning the repository from GitHub and running the setup script

git clone https://github.com/hpparvi/PyTransit.git
cd PyTransit
python setup.py install

Quickstart

Basic transit model evaluation

PyTransit comes with a set of transit models that share a common interface (with small
model-specific variations). So, while we use a Mandel & Agol quadratic limb darkening model
(pytransit.QuadraticModel) as an example here, the evaluation works the same for all the models.

First, the transit model needs to be imported from PyTransit. After this, it can be initialised, and
set up by giving it (at least) a set of mid-exposure times.

from pytransit import QuadraticModel

tm = QuadraticModel()
tm.set_data(time)

where time is a NumPy array (or a list or a tuple) of mid-exposure times for which the model will be evaluated.

After the initialisation and setup, the transit model can be evaluated as

flux = tm.evaluate(k, ldc, t0, p, a, i, e, w)

where k is the planet-star radius ratio, t0 is the zero epoch, p is the orbital period, a is the scaled
semi-major axis, i is the inclination, e is the eccentricity, w is the argument of periastron, and
ldc is an ndarray containing the model-specific limb darkening coefficients.

The calling simplifies further if we assume a circular orbit, when we can leave e and w out

flux = tm.evaluate(k, ldc, t0, p, a, i)

The radius ratio can either be a scalar, a 1D vector, or a 2D array, the limb darkening coefficients are given as a
1D vector or a 2D array, and the orbital parameters (t0, p, a, i, e, and w) can be either scalars or vectors.

In the most simple case the limb darkening coefficients are given as a single vector and the rest of the parameters are
scalars, in which case the flux array will also be one dimensional. However, if we want to evaluate the model for multiple parameter values (such as when using emcee for MCMC
sampling), giving a 2D array of limb darkening coefficients and the rest of the parameters as vectors allows PyTransit
to evaluate the models in parallel, which can lead to significant performance improvements (especially with the OpenCL
versions of the transit models). Evaluating the model for n sets of parameters will result in a flux array with a
shape (n, time.size).

A third case, giving a 2D array of radius ratios (or a 1D vector of radius ratios when the orbital parameters are
scalars), is slightly more advanced, and is used when modelling multicolor photometry (or transmission spectroscopy).
In this case the model assumes the radius ratio varies from passband to passband, and the setup requires also passband
indices (see later).

Transit Models

PyTransit implements five of the most important exoplanet transit light curve models, each with
model-specific optimisations to make their evaluation efficient. The models come in two flavours

	Numba-accelerated implementations for CPU computing. These implementations are multi-threaded,
and can be the best choice when modelling large amounts of short-cadence observations where the
data transfer between the GPU and main memory would create a bottleneck.

	OpenCL implementations for GPU computing. These can be orders of magnitude faster than the CPU
implementations if ran in a powerful GPU, especially when modelling long cadence data where
the amount of computation per observation dominates over the time for data transfer.

The CPU and GPU implementations aim to offer equal functionality, but, at the moment of writing,
they have some variation in the available features.

Transit model interface

The transit models share a unified interface with small variations to account for model-specific parameters
and settings. Some of the models have also special evaluation methods aimed for specific science
cases, such as transmission spectroscopy where the light curves have been created from a spectroscopic
time series.

The models are made to work with heterogeneous photometric time series. That is, a single model
evaluation can model observations in different passbands (with different limb darkening),
different exposure times, and different supersampling rates.

Model initialisation

Model initialisation is straightforward. The Mandel-Agol model with quadratic limb darkening can be
imported and initialised by

from pytransit import QuadraticModel

tm = QuadraticModel()

After the initialisation, the model still needs to be set up by giving it the observation centre-times,
and optionally other information, such as passbands, exposure times, supersampling rates, etc.

Data setup

Basics

At its simplest, the data setup requires the mid-observation times. If no other other information is
given, the model assumes that all the data have been observed in a single passband and that the
exposure time is short enough so that supersampling is not needed.

tm.set_data(time)

Heterogeneous light curves

PyTransit can be used to model heterogeneous time series. That is, the time array can consist of many transit light curves
observed in different passbands and with different exposure times (requiring different supersampling rates). For this to
work, the model first needs to assign each individual exposure to a single light curve. This is done by passing the
model an integer array of light curve indices (lcids), where each element maps an exposure to a light curve.

tm.set_data(time=[0,1,2,3,4], lcids=[0,0,0,1,1])

Just setting the light curve indices doesn’t do anything by itself, but it is necessary to use the more advanced features
described below.

The model doesn’t need to be told explicitly how many light curves the dataset contains, since the number
of light curves is obtained from the unique lcids elements.

Multiple passbands

PyTransit can model transits observed in multiple passbands, where each passband has a different stellar limb darkening
profile. For this, the model needs to be given an integer array of passband indices (pbids), where each element maps
a light curve to a single passband. Expanding the previous example, we can tell the model that the two light curves
belong to different passbands as

tm.set_data(time=[0,1,2,3,4], lcids=[0,0,0,1,1], pbids=[0,1])

After this, the model expects to get a two-dimensional array of limb darkening coefficients when evaluated, as explained
later in more detail.

Supersampling

If the exposure time is long (Kepler and TESS long cadence mode, for example), supersampling can
be set up by giving the exposure time (exptime) and supersampling rate (nsamples), where exptime and nsamples
are either floats or arrays.

A single float can be given when modelling a homogeneous time series

tm.set_data(time, exptime=0.02, nsamples=10)

in which case the whole time series will have a constant supersampling rate. An array of per-light-curve values can be
given when modelling heterogeneous time series

tm.set_data(time=[0,1,2,3,4], lcids=[0,0,0,1,1], exptime=[0.0007, 0.02], nsamples=[1, 10])

in which case each light curve will have a separate supersampling rate.

Advanced example

For a slightly more advanced example, a set of three light curves, two observed in one passband and the third in another
passband, with times

times_1 (lc = 0, pb = 0, sc) = [1, 2, 3, 4]
times_2 (lc = 1, pb = 0, lc) = [3, 4]
times_3 (lc = 2, pb = 1, sc) = [1, 5, 6]

would be set up as

tm.set_data(time = [1, 2, 3, 4, 3, 4, 1, 5, 6],
 lcids = [0, 0, 0, 0, 1, 1, 2, 2, 2],
 pbids = [0, 0, 1],
 nsamples = [1, 10, 1],
 exptimes = [0.1, 1.0, 0.1])

Model evaluation

tm.evaluate_ps()

tm.evaluate_pv()

OpenCL

The OpenCL versions of the models work identically to the Python version, except
that the OpenCL context and queue can be given as arguments in the initialiser, and the model evaluation method can be
told to not to copy the model from the GPU memory. If the context and queue are not given, the model creates a default
context using cl.create_some_context().

import pyopencl as cl
from src import QuadraticModelCL

ctx = cl.create_some_context()
queue = cl.CommandQueue(ctx)

tm = QuadraticModelCL(cl_ctx=ctx, cl_queue=queue)

Implemented transit models

PyTransit implements a set of transit models that all share a common interface that is described in more detail in
Transit Models.

Road Runner model

RoadRunner (pytransit.RoadRunnerModel) is a fast and flexible transit model presented in Parviainen (accepted to MNRAS 2020).
I’ll write a proper documentation soon, but these example notebooks should help you up to speed until then

	Example 1: basics [https://github.com/hpparvi/PyTransit/blob/master/notebooks/roadrunner/roadrunner_model_example_1.ipynb]

	Example 2: custom limb darkening [https://github.com/hpparvi/PyTransit/blob/master/notebooks/roadrunner/roadrunner_model_example_2.ipynb]

	Example 3: LDTk limb darkening model [https://github.com/hpparvi/PyTransit/blob/master/notebooks/roadrunner/roadrunner_model_example_3.ipynb]

Uniform model

The uniform model (pytransit.UniformModel and pytransit.UniformModelCL) reproduces an exoplanet transit over a uniform disc.
This model is useful when modelling secondary eclipses, or when the effects from the stellar limb
darkening can be ignored.

	Uniform model example [https://github.com/hpparvi/PyTransit/blob/master/notebooks/example_uniform_model.ipynb]

Quadratic model

The quadratic transit model (pytransit.QuadraticModel and pytransit.QuadraticModelCL) reproduces an exoplanet transit over a
stellar disk with the limb darkening modelled by a quadratic limb darkening model, as presented
in Mandel & Agol (ApJ 580, 2001) [https://iopscience.iop.org/article/10.1086/345520/fulltext/].

	Quadratic model example [https://github.com/hpparvi/PyTransit/blob/master/notebooks/example_quadratic_model.ipynb]

Oblate star model

TBD

Power-2 model

Power-2 model (pytransit.QPower2Model and pytransit.QPower2ModelCL) implements the transit model with a power-2 law
limb darkening profile presented by
Maxted & Gill (A&A 622, A33 2019) [https://www.aanda.org/articles/aa/abs/2019/02/aa34563-18/aa34563-18.html].
The model is fast to evaluate and aims to model the limb darkening accurately for cool stars.

	Power-2 model example [https://github.com/hpparvi/PyTransit/blob/master/notebooks/example_qpower2_model.ipynb]

Notes:

	Accurate limb darkening model for cool stars.

	Fast to evaluate.

General model

The general model (pytransit.GeneralModel) implements the flexible transit model presented by
Giménez (A&A 450, 2006) [https://www.aanda.org/articles/aa/abs/2006/18/aa4445-05/aa4445-05.html]. The stellar limb
darkening follows a “general” limb darkening model, and the accuracy of limb darkening can be increased as needed.

The model is calculated using a polynomial series and both the number of polynomials npoly and the number of limb
darkening coefficients nldc can be set in the initialisation. Higher npoly leads to a more accurate transit model,
but also increases computation time. Increasing the number of limb darkening coefficients doesn’t significantly increase
computation time, but

Notes:

	A flexible model that can model limb darkening accurately.

	Somewhat slower to evaluate than the specialized models.

	PyTransit implements a special “transmission spectroscopy mode” for the general model that accelerates the transit model
evaluation significantly for transmission spectroscopy where the light curves are computed from a spectroscopic time
series.

	The four-coefficient model presented in Mandel & Agol (ApJ 580, 2001) [https://iopscience.iop.org/article/10.1086/345520/fulltext/] is not implemented in PyTransit since the
Giménez model offers the same functionality with higher flexibility.

Chromosphere model

Optically thin shell model (pytransit.ChromosphereModel and pytransit.ChromosphereModelCL) by
Schlawin et al. (ApJL 722, 2010) [https://iopscience.iop.org/article/10.1088/2041-8205/722/1/L75] to model a transit
over a chromosphere.

	Chromosphere model example [https://github.com/hpparvi/PyTransit/blob/master/notebooks/example_chromosphere_model.ipynb]

Log posterior functions

Main LPFs

	BaseLPF

Mixin classes

	Baselines

Advanced topics

Supersampling

The transit models offer built-in supersampling for accurate modelling of long-cadence observations. The number of
samples and the exposure time can be given when setting up the model

tm.set_data(times, nsamples=10, exptimes=0.02)

Heterogeneous time series

PyTransit allows for heterogeneous time series, that is, a single time series can contain several individual light curves
(with, e.g., different time cadences and required supersampling rates) observed (possibly) in different passbands.

If a time series contains several light curves, it also needs the light curve indices for each exposure. These are given
through lcids argument, which should be an array of integers. If the time series contains light curves observed in
different passbands, the passband indices need to be given through pbids argument as an integer array, one per light
curve. Supersampling can also be defined on per-light curve basis by giving the nsamples`and `exptimes as arrays with
one value per light curve.

For example, a set of three light curves, two observed in one passband and the third in another passband

times_1 (lc = 0, pb = 0, sc) = [1, 2, 3, 4]
times_2 (lc = 1, pb = 0, lc) = [3, 4]
times_3 (lc = 2, pb = 1, sc) = [1, 5, 6]

Would be set up as

tm.set_data(time = [1, 2, 3, 4, 3, 4, 1, 5, 6],
 lcids = [0, 0, 0, 0, 1, 1, 2, 2, 2],
 pbids = [0, 0, 1],
 nsamples = [1, 10, 1],
 exptimes = [0.1, 1.0, 0.1])

Further, each passband requires two limb darkening coefficients, so the limb darkening coefficient array for a single parameter set should now be

ldc = [u1, v1, u2, v2]

where u and v are the passband-specific quadratic limb darkening model coefficients.

API

	Transit models
	Road Runner model

	Uniform model

	OpenCL Uniform model

	Quadratic model

	OpenCL Quadratic model

	Oblate star model

	General model

	QPower2 model

	Chromosphere model

	Log posterior functions

	pytransit.contamination

	Phase curves

Transit models

	Road Runner model

	Uniform model

	OpenCL Uniform model

	Quadratic model

	OpenCL Quadratic model

	Oblate star model

	General model

	QPower2 model

	Chromosphere model

Road Runner model

	
class pytransit.RoadRunnerModel(ldmodel: Union[str, Callable, Tuple[Callable, Callable]] = 'quadratic', interpolate: bool = False, klims: tuple = (0.005, 0.5), nk: int = 256, nzin: int = 20, nzlimb: int = 20, zcut=0.7, ng: int = 50, parallel: bool = False, small_planet_limit: float = 0.05)

	
	
__init__(ldmodel: Union[str, Callable, Tuple[Callable, Callable]] = 'quadratic', interpolate: bool = False, klims: tuple = (0.005, 0.5), nk: int = 256, nzin: int = 20, nzlimb: int = 20, zcut=0.7, ng: int = 50, parallel: bool = False, small_planet_limit: float = 0.05)

	The RoadRunner transit model by Parviainen (2020).

	Parameters

	
	interpolate (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Use the interpolation method presented in Parviainen (2015) if true.

	klims (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – Radius ratio limits (kmin, kmax) for the interpolated model.

	nk (int [https://docs.python.org/3/library/functions.html#int], optional) – Radius ratio grid size for the interpolated model.

	nz (int [https://docs.python.org/3/library/functions.html#int], optional) – Normalized distance grid size for the interpolated model.

	
set_data(time: Union[numpy.ndarray, List[T]], lcids: Union[numpy.ndarray, List[T], None] = None, pbids: Union[numpy.ndarray, List[T], None] = None, nsamples: Union[numpy.ndarray, List[T], None] = None, exptimes: Union[numpy.ndarray, List[T], None] = None, epids: Union[numpy.ndarray, List[T], None] = None) → None

	Set the data for the transit model.

	Parameters

	
	time (array-like) – Array of mid-exposure times for which the model will be evaluated.

	lcids (array-like, optional) – Array of integer light curve indices. Must have the same size as the time array.

	pbids (array-like, optional) – Array of passband indices, one per light curve. Must satisfy pbids.size == unique(lcids).size.

	nsamples (int [https://docs.python.org/3/library/functions.html#int] or array-like, optional) – Number of samples per exposure. Can either be an integer, in which case all the light curves will have the
same supersampling rate, or an array of integers, in which case each light curve can have a different rate.

	exptimes (float [https://docs.python.org/3/library/functions.html#float] or array-like, optional) – Exposure times, again either for all the modelled data, or one value per light curve.

	epids (array-like, optional) – Epoch indices that can be used to link a light curve to a specific zero epoch and period (for TTV calculations).

	
evaluate(k: Union[float, numpy.ndarray], ldc: Union[numpy.ndarray, List[T]], t0: Union[float, numpy.ndarray], p: Union[float, numpy.ndarray], a: Union[float, numpy.ndarray], i: Union[float, numpy.ndarray], e: Union[float, numpy.ndarray, None] = None, w: Union[float, numpy.ndarray, None] = None, copy: bool = True) → numpy.ndarray

	Evaluate the transit model for a set of scalar or vector parameters.

	Parameters

	
	k – Radius ratio(s) either as a single float, 1D vector, or 2D array.

	ldc – Limb darkening coefficients as a 1D or 2D array.

	t0 – Transit center(s) as a float or a 1D vector.

	p – Orbital period(s) as a float or a 1D vector.

	a – Orbital semi-major axis (axes) divided by the stellar radius as a float or a 1D vector.

	i – Orbital inclination(s) as a float or a 1D vector.

	e (optional) – Orbital eccentricity as a float or a 1D vector.

	w (optional) – Argument of periastron as a float or a 1D vector.

Notes

The model can be evaluated either for one set of parameters or for many sets of parameters simultaneously. In
the first case, the orbital parameters should all be given as floats. In the second case, the orbital parameters
should be given as a 1D array-like.

	Returns

	Modelled flux either as a 1D or 2D ndarray.

	Return type

	ndarray

	
evaluate_ps(k: Union[float, numpy.ndarray], ldc: numpy.ndarray, t0: Union[float, numpy.ndarray], p: float, a: float, i: float, e: float = 0.0, w: float = 0.0, copy: bool = True) → numpy.ndarray

	Evaluate the transit model for a set of scalar parameters.

	Parameters

	
	k (array-like) – Radius ratio(s) either as a single float or an 1D array.

	ldc (array-like) – Limb darkening coefficients as a 1D array.

	t0 (float [https://docs.python.org/3/library/functions.html#float]) – Transit center as a float.

	p (float [https://docs.python.org/3/library/functions.html#float]) – Orbital period as a float.

	a (float [https://docs.python.org/3/library/functions.html#float]) – Orbital semi-major axis divided by the stellar radius as a float.

	i (float [https://docs.python.org/3/library/functions.html#float]) – Orbital inclination(s) as a float.

	e (float [https://docs.python.org/3/library/functions.html#float], optional) – Orbital eccentricity as a float.

	w (float [https://docs.python.org/3/library/functions.html#float], optional) – Argument of periastron as a float.

Notes

This version of the evaluate method is optimized for calculating a single transit model (such as when using a
local optimizer). If you want to evaluate the model for a large number of parameters simultaneously, use either
evaluate or evaluate_pv.

	Returns

	Modelled flux as a 1D ndarray.

	Return type

	ndarray

	
evaluate_pv(pvp: numpy.ndarray, ldc: numpy.ndarray, copy: bool = True) → numpy.ndarray

	

Uniform model

	
class pytransit.UniformModel(eclipse: bool = False)

	
	
set_data(time: Union[numpy.ndarray, List[T]], lcids: Union[numpy.ndarray, List[T], None] = None, pbids: Union[numpy.ndarray, List[T], None] = None, nsamples: Union[numpy.ndarray, List[T], None] = None, exptimes: Union[numpy.ndarray, List[T], None] = None, epids: Union[numpy.ndarray, List[T], None] = None) → None

	Set the data for the transit model.

	Parameters

	
	time (array-like) – Array of mid-exposure times for which the model will be evaluated.

	lcids (array-like, optional) – Array of integer light curve indices. Must have the same size as the time array.

	pbids (array-like, optional) – Array of passband indices, one per light curve. Must satisfy pbids.size == unique(lcids).size.

	nsamples (int [https://docs.python.org/3/library/functions.html#int] or array-like, optional) – Number of samples per exposure. Can either be an integer, in which case all the light curves will have the
same supersampling rate, or an array of integers, in which case each light curve can have a different rate.

	exptimes (float [https://docs.python.org/3/library/functions.html#float] or array-like, optional) – Exposure times, again either for all the modelled data, or one value per light curve.

	epids (array-like, optional) – Epoch indices that can be used to link a light curve to a specific zero epoch and period (for TTV calculations).

	
evaluate(k: Union[float, numpy.ndarray], t0: Union[float, numpy.ndarray], p: Union[float, numpy.ndarray], a: Union[float, numpy.ndarray], i: Union[float, numpy.ndarray], e: Union[float, numpy.ndarray] = None, w: Union[float, numpy.ndarray] = None, copy: bool = True) → numpy.ndarray

	Evaluates the uniform transit model for a set of scalar or vector parameters.

	Parameters

	
	k – Radius ratio(s) either as a single float, 1D vector, or 2D array.

	t0 – Transit center(s) as a float or a 1D vector.

	p – Orbital period(s) as a float or a 1D vector.

	a – Orbital semi-major axis (axes) divided by the stellar radius as a float or a 1D vector.

	i – Orbital inclination(s) as a float or a 1D vector.

	e – Orbital eccentricity as a float or a 1D vector.

	w – Argument of periastron as a float or a 1D vector.

	copy –

Notes

The model can be evaluated either for one set of parameters or for many sets of parameters simultaneously.
The orbital parameters can be given either as a float or a 1D array-like (preferably ndarray for optimal speed.)

	Returns

	

	Return type

	Transit model

	
evaluate_ps(k: float, t0: float, p: float, a: float, i: float, e: float = 0.0, w: float = 0.0) → numpy.ndarray

	Evaluate the transit model for a set of scalar parameters.

	Parameters

	
	k (array-like) – Radius ratio(s) either as a single float or an 1D array.

	t0 (float [https://docs.python.org/3/library/functions.html#float]) – Transit center as a float.

	p (float [https://docs.python.org/3/library/functions.html#float]) – Orbital period as a float.

	a (float [https://docs.python.org/3/library/functions.html#float]) – Orbital semi-major axis divided by the stellar radius as a float.

	i (float [https://docs.python.org/3/library/functions.html#float]) – Orbital inclination(s) as a float.

	e (float [https://docs.python.org/3/library/functions.html#float], optional) – Orbital eccentricity as a float.

	w (float [https://docs.python.org/3/library/functions.html#float], optional) – Argument of periastron as a float.

Notes

This version of the evaluate method is optimized for calculating a single transit model (such as when using a
local optimizer). If you want to evaluate the model for a large number of parameters simultaneously, use either
evaluate or evaluate_pv.

	Returns

	Modelled flux as a 1D ndarray.

	Return type

	ndarray

	
evaluate_pv(pvp: numpy.ndarray) → numpy.ndarray

	Evaluate the transit model for a 2D parameter array.

	Parameters

	pvp – Parameter array with a shape (npv, npar) where npv is the number of parameter vectors, and each row
contains a set of parameters [k, t0, p, a, i, e, w]. The radius ratios can also be given per passband,
in which case the row should be structured as [k_0, k_1, k_2, …, k_npb, t0, p, a, i, e, w].

Notes

This version of the evaluate method is optimized for calculating several models in parallel, such as when
using emcee for MCMC sampling.

	Returns

	Modelled flux either as a 1D or 2D ndarray.

	Return type

	ndarray

OpenCL Uniform model

	
pytransit.UniformModelCL

	alias of pytransit.DummyModelCL

Quadratic model

	
class pytransit.QuadraticModel(interpolate: bool = True, klims: tuple = (0.01, 0.5), nk: int = 256, nz: int = 256)

	Transit model with quadratic limb darkening (Mandel & Agol, ApJ 580, L171-L175 2002).

	
__init__(interpolate: bool = True, klims: tuple = (0.01, 0.5), nk: int = 256, nz: int = 256)

	Transit model with quadratic limb darkening (Mandel & Agol, ApJ 580, L171-L175 2002).

	Parameters

	
	interpolate (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Use the interpolation method presented in Parviainen (2015) if true.

	klims (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – Radius ratio limits (kmin, kmax) for the interpolated model.

	nk (int [https://docs.python.org/3/library/functions.html#int], optional) – Radius ratio grid size for the interpolated model.

	nz (int [https://docs.python.org/3/library/functions.html#int], optional) – Normalized distance grid size for the interpolated model.

	
set_data(time: Union[numpy.ndarray, List[T]], lcids: Union[numpy.ndarray, List[T], None] = None, pbids: Union[numpy.ndarray, List[T], None] = None, nsamples: Union[numpy.ndarray, List[T], None] = None, exptimes: Union[numpy.ndarray, List[T], None] = None, epids: Union[numpy.ndarray, List[T], None] = None) → None

	Set the data for the transit model.

	Parameters

	
	time (array-like) – Array of mid-exposure times for which the model will be evaluated.

	lcids (array-like, optional) – Array of integer light curve indices. Must have the same size as the time array.

	pbids (array-like, optional) – Array of passband indices, one per light curve. Must satisfy pbids.size == unique(lcids).size.

	nsamples (int [https://docs.python.org/3/library/functions.html#int] or array-like, optional) – Number of samples per exposure. Can either be an integer, in which case all the light curves will have the
same supersampling rate, or an array of integers, in which case each light curve can have a different rate.

	exptimes (float [https://docs.python.org/3/library/functions.html#float] or array-like, optional) – Exposure times, again either for all the modelled data, or one value per light curve.

	epids (array-like, optional) – Epoch indices that can be used to link a light curve to a specific zero epoch and period (for TTV calculations).

	
evaluate(k: Union[float, numpy.ndarray], ldc: Union[numpy.ndarray, List[T]], t0: Union[float, numpy.ndarray], p: Union[float, numpy.ndarray], a: Union[float, numpy.ndarray], i: Union[float, numpy.ndarray], e: Union[float, numpy.ndarray, None] = None, w: Union[float, numpy.ndarray, None] = None, copy: bool = True) → numpy.ndarray

	Evaluate the transit model for a set of scalar or vector parameters.

	Parameters

	
	k – Radius ratio(s) either as a single float, 1D vector, or 2D array.

	ldc – Limb darkening coefficients as a 1D or 2D array.

	t0 – Transit center(s) as a float or a 1D vector.

	p – Orbital period(s) as a float or a 1D vector.

	a – Orbital semi-major axis (axes) divided by the stellar radius as a float or a 1D vector.

	i – Orbital inclination(s) as a float or a 1D vector.

	e (optional) – Orbital eccentricity as a float or a 1D vector.

	w (optional) – Argument of periastron as a float or a 1D vector.

Notes

The model can be evaluated either for one set of parameters or for many sets of parameters simultaneously. In
the first case, the orbital parameters should all be given as floats. In the second case, the orbital parameters
should be given as a 1D array-like.

	Returns

	Modelled flux either as a 1D or 2D ndarray.

	Return type

	ndarray

	
evaluate_ps(k: Union[float, numpy.ndarray], ldc: numpy.ndarray, t0: Union[float, numpy.ndarray], p: float, a: float, i: float, e: float = 0.0, w: float = 0.0, copy: bool = True) → numpy.ndarray

	Evaluate the transit model for a set of scalar parameters.

	Parameters

	
	k (array-like) – Radius ratio(s) either as a single float or an 1D array.

	ldc (array-like) – Limb darkening coefficients as a 1D array.

	t0 (float [https://docs.python.org/3/library/functions.html#float]) – Transit center as a float.

	p (float [https://docs.python.org/3/library/functions.html#float]) – Orbital period as a float.

	a (float [https://docs.python.org/3/library/functions.html#float]) – Orbital semi-major axis divided by the stellar radius as a float.

	i (float [https://docs.python.org/3/library/functions.html#float]) – Orbital inclination as a float.

	e (float [https://docs.python.org/3/library/functions.html#float], optional) – Orbital eccentricity as a float.

	w (float [https://docs.python.org/3/library/functions.html#float], optional) – Argument of periastron as a float.

Notes

This version of the evaluate method is optimized for calculating a single transit model (such as when using a
local optimizer). If you want to evaluate the model for a large number of parameters simultaneously, use either
evaluate or evaluate_pv.

	Returns

	Modelled flux as a 1D ndarray.

	Return type

	ndarray

	
evaluate_pv(pvp: numpy.ndarray, ldc: numpy.ndarray, copy: bool = True) → numpy.ndarray

	Evaluate the transit model for a 2D parameter array.

	Parameters

	
	pvp (ndarray) – Parameter array with a shape (npv, npar) where npv is the number of parameter vectors, and each row
contains a set of parameters [k, t0, p, a, i, e, w]. The radius ratios can also be given per passband,
in which case the row should be structured as [k_0, k_1, k_2, …, k_npb, t0, p, a, b, e, w].

	ldc (ndarray) – Limb darkening coefficient array with shape (npv, 2*npb), where npv is the number of parameter vectors
and npb is the number of passbands.

Notes

This version of the evaluate method is optimized for calculating several models in parallel, such as when
using emcee for MCMC sampling.

	Returns

	Modelled flux either as a 1D or 2D ndarray.

	Return type

	ndarray

OpenCL Quadratic model

	
pytransit.QuadraticModelCL

	alias of pytransit.DummyModelCL

Oblate star model

	
class pytransit.OblateStarModel(rstar: float = 1.0, wavelength: float = 510, sres: int = 80, pres: int = 6)

	Transit model for a gravity-darkened fast-rotating oblate star.

Transit model for a gravity-darkened fast-rotating oblate star following Barnes (ApJ, 2009, 705).

	
__init__(rstar: float = 1.0, wavelength: float = 510, sres: int = 80, pres: int = 6)

	
	Parameters

	
	rstar – Stellar radius [R_Sun]

	wavelength – Effective wavelength [nm]

	sres – Stellar discretization resolution

	pres – Planet discretization resolution

	
set_data(time: Union[numpy.ndarray, List[T]], lcids: Union[numpy.ndarray, List[T], None] = None, pbids: Union[numpy.ndarray, List[T], None] = None, nsamples: Union[numpy.ndarray, List[T], None] = None, exptimes: Union[numpy.ndarray, List[T], None] = None, epids: Union[numpy.ndarray, List[T], None] = None) → None

	Set the data for the transit model.

	Parameters

	
	time (array-like) – Array of mid-exposure times for which the model will be evaluated.

	lcids (array-like, optional) – Array of integer light curve indices. Must have the same size as the time array.

	pbids (array-like, optional) – Array of passband indices, one per light curve. Must satisfy pbids.size == unique(lcids).size.

	nsamples (int [https://docs.python.org/3/library/functions.html#int] or array-like, optional) – Number of samples per exposure. Can either be an integer, in which case all the light curves will have the
same supersampling rate, or an array of integers, in which case each light curve can have a different rate.

	exptimes (float [https://docs.python.org/3/library/functions.html#float] or array-like, optional) – Exposure times, again either for all the modelled data, or one value per light curve.

	epids (array-like, optional) – Epoch indices that can be used to link a light curve to a specific zero epoch and period (for TTV calculations).

	
evaluate(k: Union[float, numpy.ndarray], ldc: numpy.ndarray, t0: Union[float, numpy.ndarray], p: Union[float, numpy.ndarray], a: Union[float, numpy.ndarray], i: Union[float, numpy.ndarray], e: Union[float, numpy.ndarray] = None, w: Union[float, numpy.ndarray] = None, copy: bool = True) → numpy.ndarray

	

	
evaluate_ps(k: Union[float, numpy.ndarray], rho: float, rperiod: float, tpole: float, phi: float, beta: float, ldc: numpy.ndarray, t0: float, p: float, a: float, i: float, l: float = 0.0, e: float = 0.0, w: float = 0.0, copy: bool = True) → numpy.ndarray

	Evaluate the transit model for a set of scalar parameters.

	Parameters

	
	k (array-like) – Radius ratio(s) either as a single float or an 1D array

	rho (float [https://docs.python.org/3/library/functions.html#float]) – Stellar density [g/cm^3]

	rperiod (float [https://docs.python.org/3/library/functions.html#float]) – Stellar rotation period [d]

	tpole (float [https://docs.python.org/3/library/functions.html#float]) – Temperature at the pole [K]

	phi (float [https://docs.python.org/3/library/functions.html#float]) – Star’s obliquity to the plane of the sky [rad]

	beta (float [https://docs.python.org/3/library/functions.html#float]) – Gravity darkening parameter

	ldc (array-like) – Limb darkening coefficients as a 1D array

	t0 (float [https://docs.python.org/3/library/functions.html#float]) – Zero epoch

	p (float [https://docs.python.org/3/library/functions.html#float]) – Orbital period [d]

	a (float [https://docs.python.org/3/library/functions.html#float]) – Scaled orbital semi-major axis [R_star]

	i (float [https://docs.python.org/3/library/functions.html#float]) – Orbital inclination [rad]

	l (float [https://docs.python.org/3/library/functions.html#float]) – Orbital azimuth angle [rad]

	e (float [https://docs.python.org/3/library/functions.html#float], optional) – Orbital eccentricity

	w (float [https://docs.python.org/3/library/functions.html#float], optional) – Argument of periastron

Notes

This version of the evaluate method is optimized for calculating a single transit model (such as when using a
local optimizer). If you want to evaluate the model for a large number of parameters simultaneously, use either
evaluate or evaluate_pv.

	Returns

	Modelled flux as a 1D ndarray.

	Return type

	ndarray

	
evaluate_pv(pvp: numpy.ndarray, ldc: numpy.ndarray, copy: bool = True) → numpy.ndarray

	

General model

	
class pytransit.GeneralModel(npol: int = 50, nldc: int = 2, mode: int = 0)

	Transit model with general limb darkening (Giménez, A&A 450, 1231–1237, 2006).

Transit model with general limb darkening (Giménez, A&A 450, 1231–1237, 2006) with optimizations described in
Parviainen (MNRAS 450, 3233–3238, 2015).

The general limb darkening law is

[image: I(\mu) = I(1) (1 - \sum_{n=1}^N u_n(1-\mu^n))]

	
__init__(npol: int = 50, nldc: int = 2, mode: int = 0)

	Initialize self. See help(type(self)) for accurate signature.

	
set_data(time: Union[numpy.ndarray, List[T]], lcids: Union[numpy.ndarray, List[T], None] = None, pbids: Union[numpy.ndarray, List[T], None] = None, nsamples: Union[numpy.ndarray, List[T], None] = None, exptimes: Union[numpy.ndarray, List[T], None] = None, epids: Union[numpy.ndarray, List[T], None] = None) → None

	Set the data for the transit model.

	Parameters

	
	time (array-like) – Array of mid-exposure times for which the model will be evaluated.

	lcids (array-like, optional) – Array of integer light curve indices. Must have the same size as the time array.

	pbids (array-like, optional) – Array of passband indices, one per light curve. Must satisfy pbids.size == unique(lcids).size.

	nsamples (int [https://docs.python.org/3/library/functions.html#int] or array-like, optional) – Number of samples per exposure. Can either be an integer, in which case all the light curves will have the
same supersampling rate, or an array of integers, in which case each light curve can have a different rate.

	exptimes (float [https://docs.python.org/3/library/functions.html#float] or array-like, optional) – Exposure times, again either for all the modelled data, or one value per light curve.

	epids (array-like, optional) – Epoch indices that can be used to link a light curve to a specific zero epoch and period (for TTV calculations).

	
evaluate(k: Union[float, numpy.ndarray], ldc: Union[numpy.ndarray, List[T]], t0: Union[float, numpy.ndarray], p: Union[float, numpy.ndarray], a: Union[float, numpy.ndarray], i: Union[float, numpy.ndarray], e: Union[float, numpy.ndarray, None] = None, w: Union[float, numpy.ndarray, None] = None, copy: bool = True) → numpy.ndarray

	Evaluate the transit model for a set of scalar or vector parameters.

	Parameters

	
	k – Radius ratio(s) either as a single float, 1D vector, or 2D array.

	ldc – Limb darkening coefficients as a 1D or 2D array.

	t0 – Transit center(s) as a float or a 1D vector.

	p – Orbital period(s) as a float or a 1D vector.

	a – Orbital semi-major axis (axes) divided by the stellar radius as a float or a 1D vector.

	i – Orbital inclination(s) as a float or a 1D vector.

	e (optional) – Orbital eccentricity as a float or a 1D vector.

	w (optional) – Argument of periastron as a float or a 1D vector.

Notes

The model can be evaluated either for one set of parameters or for many sets of parameters simultaneously. In
the first case, the orbital parameters should all be given as floats. In the second case, the orbital parameters
should be given as a 1D array-like.

	Returns

	Modelled flux either as a 1D or 2D ndarray.

	Return type

	ndarray

	
evaluate_ps(k: Union[float, numpy.ndarray], ldc: numpy.ndarray, t0: float, p: float, a: float, i: float, e: float = 0.0, w: float = 0.0, copy: bool = True) → numpy.ndarray

	Evaluate the transit model for a set of scalar parameters.

	Parameters

	
	k (array-like) – Radius ratio(s) either as a single float or an 1D array.

	ldc (array-like) – Limb darkening coefficients as a 1D array.

	t0 (float [https://docs.python.org/3/library/functions.html#float]) – Transit center as a float.

	p (float [https://docs.python.org/3/library/functions.html#float]) – Orbital period as a float.

	a (float [https://docs.python.org/3/library/functions.html#float]) – Orbital semi-major axis divided by the stellar radius as a float.

	i (float [https://docs.python.org/3/library/functions.html#float]) – Orbital inclination(s) as a float.

	e (float [https://docs.python.org/3/library/functions.html#float], optional) – Orbital eccentricity as a float.

	w (float [https://docs.python.org/3/library/functions.html#float], optional) – Argument of periastron as a float.

Notes

This version of the evaluate method is optimized for calculating a single transit model (such as when using a
local optimizer). If you want to evaluate the model for a large number of parameters simultaneously, use either
evaluate or evaluate_pv.

	Returns

	Modelled flux as a 1D ndarray.

	Return type

	ndarray

	
evaluate_pv(pvp: numpy.ndarray, ldc: numpy.ndarray, copy: bool = True) → numpy.ndarray

	Evaluate the transit model for a 2D parameter array.

	Parameters

	
	pvp (ndarray) – Parameter array with a shape (npv, npar) where npv is the number of parameter vectors, and each row
contains a set of parameters [k, t0, p, a, i, e, w]. The radius ratios can also be given per passband,
in which case the row should be structured as [k_0, k_1, k_2, …, k_npb, t0, p, a, i, e, w].

	ldc (ndarray) – Limb darkening coefficient array with shape (npv, 2*npb), where npv is the number of parameter vectors
and npb is the number of passbands.

Notes

This version of the evaluate method is optimized for calculating several models in parallel, such as when
using emcee for MCMC sampling.

	Returns

	Modelled flux either as a 1D or 2D ndarray.

	Return type

	ndarray

QPower2 model

	
class pytransit.QPower2Model

	QPower2 transit model by Maxted & Gill (A&A, 622, A33, 2019).

	
set_data(time: Union[numpy.ndarray, List[T]], lcids: Union[numpy.ndarray, List[T], None] = None, pbids: Union[numpy.ndarray, List[T], None] = None, nsamples: Union[numpy.ndarray, List[T], None] = None, exptimes: Union[numpy.ndarray, List[T], None] = None, epids: Union[numpy.ndarray, List[T], None] = None) → None

	Set the data for the transit model.

	Parameters

	
	time (array-like) – Array of mid-exposure times for which the model will be evaluated.

	lcids (array-like, optional) – Array of integer light curve indices. Must have the same size as the time array.

	pbids (array-like, optional) – Array of passband indices, one per light curve. Must satisfy pbids.size == unique(lcids).size.

	nsamples (int [https://docs.python.org/3/library/functions.html#int] or array-like, optional) – Number of samples per exposure. Can either be an integer, in which case all the light curves will have the
same supersampling rate, or an array of integers, in which case each light curve can have a different rate.

	exptimes (float [https://docs.python.org/3/library/functions.html#float] or array-like, optional) – Exposure times, again either for all the modelled data, or one value per light curve.

	epids (array-like, optional) – Epoch indices that can be used to link a light curve to a specific zero epoch and period (for TTV calculations).

	
evaluate(k: Union[float, numpy.ndarray], ldc: numpy.ndarray, t0: Union[float, numpy.ndarray], p: Union[float, numpy.ndarray], a: Union[float, numpy.ndarray], i: Union[float, numpy.ndarray], e: Union[float, numpy.ndarray, None] = None, w: Union[float, numpy.ndarray, None] = None, copy: bool = True) → numpy.ndarray

	Evaluate the transit model for a set of scalar or vector parameters.

	Parameters

	
	k – Radius ratio(s) either as a single float, 1D vector, or 2D array.

	ldc – Limb darkening coefficients as a 1D or 2D array.

	t0 – Transit center(s) as a float or a 1D vector.

	p – Orbital period(s) as a float or a 1D vector.

	a – Orbital semi-major axis (axes) divided by the stellar radius as a float or a 1D vector.

	i – Orbital inclination(s) as a float or a 1D vector.

	e (optional) – Orbital eccentricity as a float or a 1D vector.

	w (optional) – Argument of periastron as a float or a 1D vector.

Notes

The model can be evaluated either for one set of parameters or for many sets of parameters simultaneously. In
the first case, the orbital parameters should all be given as floats. In the second case, the orbital parameters
should be given as a 1D array-like.

	Returns

	Modelled flux either as a 1D or 2D ndarray.

	Return type

	ndarray

	
evaluate_ps(k: float, ldc: numpy.ndarray, t0: float, p: float, a: float, i: float, e: float = 0.0, w: float = 0.0) → numpy.ndarray

	Evaluate the transit model for a set of scalar parameters.

	Parameters

	
	k (array-like) – Radius ratio(s) either as a single float or an 1D array.

	ldc – Limb darkening coefficients as a 1D or 2D array.

	t0 (float [https://docs.python.org/3/library/functions.html#float]) – Transit center as a float.

	p (float [https://docs.python.org/3/library/functions.html#float]) – Orbital period as a float.

	a (float [https://docs.python.org/3/library/functions.html#float]) – Orbital semi-major axis divided by the stellar radius as a float.

	i (float [https://docs.python.org/3/library/functions.html#float]) – Orbital inclination(s) as a float.

	e (float [https://docs.python.org/3/library/functions.html#float], optional) – Orbital eccentricity as a float.

	w (float [https://docs.python.org/3/library/functions.html#float], optional) – Argument of periastron as a float.

Notes

This version of the evaluate method is optimized for calculating a single transit model (such as when using a
local optimizer). If you want to evaluate the model for a large number of parameters simultaneously, use either
evaluate or evaluate_pv.

	Returns

	Modelled flux as a 1D ndarray.

	Return type

	ndarray

	
evaluate_pv(pvp: numpy.ndarray, ldc: numpy.ndarray) → numpy.ndarray

	Evaluate the transit model for a 2D parameter array.

	Parameters

	pvp – Parameter array with a shape (npv, npar) where npv is the number of parameter vectors, and each row
contains a set of parameters [k, t0, p, a, i, e, w]. The radius ratios can also be given per passband,
in which case the row should be structured as [k_0, k_1, k_2, …, k_npb, t0, p, a, i, e, w].

Notes

This version of the evaluate method is optimized for calculating several models in parallel, such as when
using emcee for MCMC sampling.

	Returns

	Modelled flux either as a 1D or 2D ndarray.

	Return type

	ndarray

Chromosphere model

	
class pytransit.ChromosphereModel

	
	
set_data(time: Union[numpy.ndarray, List[T]], lcids: Union[numpy.ndarray, List[T], None] = None, pbids: Union[numpy.ndarray, List[T], None] = None, nsamples: Union[numpy.ndarray, List[T], None] = None, exptimes: Union[numpy.ndarray, List[T], None] = None, epids: Union[numpy.ndarray, List[T], None] = None) → None

	Set the data for the transit model.

	Parameters

	
	time (array-like) – Array of mid-exposure times for which the model will be evaluated.

	lcids (array-like, optional) – Array of integer light curve indices. Must have the same size as the time array.

	pbids (array-like, optional) – Array of passband indices, one per light curve. Must satisfy pbids.size == unique(lcids).size.

	nsamples (int [https://docs.python.org/3/library/functions.html#int] or array-like, optional) – Number of samples per exposure. Can either be an integer, in which case all the light curves will have the
same supersampling rate, or an array of integers, in which case each light curve can have a different rate.

	exptimes (float [https://docs.python.org/3/library/functions.html#float] or array-like, optional) – Exposure times, again either for all the modelled data, or one value per light curve.

	epids (array-like, optional) – Epoch indices that can be used to link a light curve to a specific zero epoch and period (for TTV calculations).

	
evaluate_ps(k: float, t0: float, p: float, a: float, i: float, e: float = 0.0, w: float = 0.0) → numpy.ndarray

	Evaluate the transit model for a set of scalar parameters.

	Parameters

	
	k (array-like) – Radius ratio(s) either as a single float or an 1D array.

	t0 (float [https://docs.python.org/3/library/functions.html#float]) – Transit center as a float.

	p (float [https://docs.python.org/3/library/functions.html#float]) – Orbital period as a float.

	a (float [https://docs.python.org/3/library/functions.html#float]) – Orbital semi-major axis divided by the stellar radius as a float.

	i (float [https://docs.python.org/3/library/functions.html#float]) – Orbital inclination(s) as a float.

	e (float [https://docs.python.org/3/library/functions.html#float], optional) – Orbital eccentricity as a float.

	w (float [https://docs.python.org/3/library/functions.html#float], optional) – Argument of periastron as a float.

Notes

This version of the evaluate method is optimized for calculating a single transit model (such as when using a
local optimizer). If you want to evaluate the model for a large number of parameters simultaneously, use either
evaluate or evaluate_pv.

	Returns

	Modelled flux as a 1D ndarray.

	Return type

	ndarray

	
evaluate_pv(pvp: numpy.ndarray) → numpy.ndarray

	Evaluate the transit model for a 2D parameter array.

	Parameters

	pvp – Parameter array with a shape (npv, npar) where npv is the number of parameter vectors, and each row
contains a set of parameters [k, t0, p, a, i, e, w]. The radius ratios can also be given per passband,
in which case the row should be structured as [k_0, k_1, k_2, …, k_npb, t0, p, a, i, e, w].

Notes

This version of the evaluate method is optimized for calculating several models in parallel, such as when
using emcee for MCMC sampling.

	Returns

	Modelled flux either as a 1D or 2D ndarray.

	Return type

	ndarray

Log posterior functions

Log posterior functions for transit modelling and parameter estimation.

A log posterior function (LPF) class creates a basis for Bayesian parameter estimation from transit light curves.
In PyTransit, LPFs are a bit more than what the name implies. An LPF stores the observations, model priors, etc.
It also contains methods for posterior optimisation and MCMC sampling.

	
class pytransit.lpf.BaseLPF(name: str, passbands: list, times: list = None, fluxes: Iterable[T_co] = None, errors: list = None, pbids: list = None, covariates: list = None, wnids: list = None, tm: pytransit.models.transitmodel.TransitModel = None, nsamples: tuple = 1, exptimes: tuple = 0.0, init_data=True, result_dir: pathlib.Path = None, tref: float = 0.0, lnlikelihood: str = 'wn')

	
	
add_as_prior(mean: float, std: float) → None

	Add a normal prior on the scaled semi-major axis [image: (a / R_\star)].

	Parameters

	
	mean (float [https://docs.python.org/3/library/functions.html#float]) – Mean of the normal distribution.

	std (float [https://docs.python.org/3/library/functions.html#float]) – Standard deviation of the normal distribution

	
add_ldtk_prior(teff: tuple, logg: tuple, z: tuple, passbands: tuple, uncertainty_multiplier: float = 3, **kwargs) → None

	Add a LDTk-based prior on the limb darkening.

	Parameters

	
	teff –

	logg –

	z –

	passbands –

	uncertainty_multiplier –

	
add_prior(prior)

	

	
add_t14_prior(mean: float, std: float) → None

	Add a normal prior on the transit duration.

	Parameters

	
	mean (float [https://docs.python.org/3/library/functions.html#float]) – Mean of the normal distribution

	std (float [https://docs.python.org/3/library/functions.html#float]) – Standard deviation of the normal distribution.

	
baseline(pv)

	

	
create_pv_population(npop=50)

	

	
flux_model(pv)

	

	
lnlikelihood(pvp)

	Log likelihood for a 1D or 2D array of model parameters.

	Parameters

	pvp (ndarray) – Either a 1D parameter vector or a 2D parameter array.

	Returns

	

	Return type

	Log likelihood for the given parameter vector(s)

	
plot_light_curves(method='de', ncol: int = 3, width: float = 2.0, max_samples: int = 1000, figsize=None, data_alpha=0.5, ylim=None)

	

	
posterior_samples(burn: int = 0, thin: int = 1, derived_parameters: bool = True)

	

	
remove_outliers(sigma=5)

	

	
remove_transits(tids)

	

	
residuals(pv)

	

	
set_radius_ratio_prior(kmin, kmax)

	Set a uniform prior on all radius ratios.

	
transit_model(pv, copy=True)

	

	
trends(pv)

	Additive trends

pytransit.contamination

Module to model flux contamination in transit light curves.

	
class pytransit.contamination.SMContamination(instrument: pytransit.contamination.instrument.Instrument, ref_pb: str = None)

	Bases: pytransit.contamination.contamination._BaseContamination

A class that models flux contamination based on stellar spectrum models.

	
absolute_flux(teff: float, wl: Union[float, Iterable[T_co]]) → numpy.ndarray

	The absolute flux given an effective temperature and a set of wavelength.

	Parameters

	
	teff (float [https://docs.python.org/3/library/functions.html#float]) – The effective temperature [K]

	wl (array-like) – The wavelengths to calculate the flux in [nm]

	Returns

	

	Return type

	Spectral radiance.

	
apply_extinction

	

	
contamination(cref: Union[float, numpy.ndarray], teff1: Union[float, numpy.ndarray], teff2: Union[float, numpy.ndarray])

	Contamination given reference contamination, host TEff, and contaminant TEff(s)

Per-passband contamination given the contamination in the reference passband and TEffs of the two stars.

	Parameters

	
	cref (float [https://docs.python.org/3/library/functions.html#float]) – contamination in the reference passband

	teff1 – Effective stellar temperature [K]

	teff2 – Effective stellar temperature [K]

	Returns

	

	Return type

	Per-passband contamination

	
reddening(a)

	

	
relative_flux(teff: float, wl: Union[float, numpy.ndarray], wlref: float) → numpy.ndarray

	The stellar flux normalized to a given reference wavelength.

	Parameters

	
	teff (float [https://docs.python.org/3/library/functions.html#float]) – The effective temperature of the radiating body [K]

	wl (array-like) – The wavelengths to calculate the flux in [nm]

	wlref (float [https://docs.python.org/3/library/functions.html#float]) – The reference wavelength [nm]

	Returns

	

	Return type

	The flux normalized to a given reference wavelength

	
relative_flux_mixture(teffs, fractions, rdc=None)

	

	
relative_fluxes(teff: Union[float, numpy.ndarray], rdc=None, rpb=None)

	

	
class pytransit.contamination.BBContamination(instrument: pytransit.contamination.instrument.Instrument, ref_pb: str, delta_l: float = 10)

	Bases: pytransit.contamination.contamination._BaseContamination

Third light contamination based on black body approximation.

This class offers a simple black-body model for flux contamination in which the target star and the contaminant(s)
are approximated as black bodies with effective temperatures Tt, Tc1, Tc2, …, Tcn.

	
static absolute_flux(teff: float, wl: Union[float, Iterable[T_co]]) → numpy.ndarray

	The absolute flux given an effective temperature and wavelength.

	Parameters

	
	teff – The effective temperature in K

	wl – The wavelength (or an array of) in nm

	Returns

	

	Return type

	Black body spectral radiance.

	
absolute_fluxes(teff: float) → numpy.ndarray

	Calculates the integrated absolute fluxes for all filters for a star with the given effective temperature

	Parameters

	teff – The effective temperature of the radiating body [K]

	Returns

	

	Return type

	The integrated absolute fluxes for the filters in the instrument.

	
contamination(cref: float, teff1: float, teff2: float) → numpy.ndarray

	Calculates the contamination factors for all the filters given the contamination in the reference passband.

	Parameters

	
	cref – Reference passband contamination

	teff1 – Host star effective temperature

	teff2 – Contaminant effective temperature

	Returns

	

	Return type

	Contamination factors for all the filters.

	
static relative_flux(teff: float, wl: Union[float, numpy.ndarray], wlref: float) → numpy.ndarray

	The black body flux normalized to a given reference wavelength.

	Parameters

	
	teff – The effective temperature of the radiating body [K]

	wl – The wavelength [nm]

	wlref – The reference wavelength [nm]

	Returns

	

	Return type

	The black body flux normalized to a given reference wavelength

	
relative_fluxes(teff: Union[float, numpy.ndarray]) → numpy.ndarray

	Calculates the integrated fluxes for all filters normalized to the reference passband.

	Parameters

	teff – The effective temperature of the radiating body [K]

	Returns

	

	Return type

	The integrated fluxes for all filters normalized to the reference passband.

	
class pytransit.contamination.Instrument(name, filters, qes=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
class pytransit.contamination.ClearFilter(name)

	Bases: pytransit.contamination.filter.Filter

Constant unity transmission.

	
class pytransit.contamination.BoxcarFilter(name, wl_min, wl_max)

	Bases: pytransit.contamination.filter.Filter

Filter with a transmission of 1 inside the minimum and maximum wavelengths and 0 outside.

	
class pytransit.contamination.TabulatedFilter(name, wl, tm)

	Bases: pytransit.contamination.filter.Filter

Interpolated tabulated filter.

	
pytransit.contamination.true_radius_ratio(apparent_k: float, contamination: float) → float

	

	
pytransit.contamination.apparent_radius_ratio(true_k: float, contamination: float) → float

	

	
pytransit.contamination.contaminate_light_curve

	Contaminates a transit light curve.

Contaminates a transit light curve with npb passbands.

	Parameters

	
	flux (1d array-like) – Transit light curve with npb passbands.

	contamination (1d array-like) – Array of per-passband contamination values.

	pbids (1d array-like) – Passband indices that map each light curve element to a single passband.

	Returns

	

	Return type

	Contaminated transit light curve

Phase curves

	
pytransit.utils.phasecurves.doppler_boosting_alpha(teff: float, flt)

	The photon weighted bandpass-integrated boosting factor.

	Parameters

	
	teff – Effective temperature of the star [K]

	flt – Passband transmission

	Returns

	The photon weighted bandpass-integrated boosting factor.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
pytransit.utils.phasecurves.doppler_boosting_amplitude(mp: Union[float, numpy.ndarray], ms: Union[float, numpy.ndarray], period: Union[float, numpy.ndarray], alpha: Union[float, numpy.ndarray]) → Union[float, numpy.ndarray]

	The amplitude of the doppler boosting signal.

Calculates the amplitude of the doppler boosting (beaming, reflex doppler effect) signal following the approach
described by Loeb & Gaudi in [Loeb2003] . Note that you need to pre-calculate the photon-weighted bandpass-integrated
boosting factor (alpha) [Bloemen2010] [Barclay2012] for the star and the instrument using doppler_boosting_alpha.

	Parameters

	
	mp (float [https://docs.python.org/3/library/functions.html#float] or ndarray) – Planetary mass [MJup]

	ms (float [https://docs.python.org/3/library/functions.html#float] or ndarray) – Stellar mass [MSun]

	period (float [https://docs.python.org/3/library/functions.html#float] or ndarray) – Orbital period [d]

	alpha (float [https://docs.python.org/3/library/functions.html#float] or ndarray) – Photon-weighted bandpass-integrated boosting factor

	Returns

	Doppler boosting signal amplitude

	Return type

	float [https://docs.python.org/3/library/functions.html#float] or ndarray

References

	Loeb2003

	Loeb, A. & Gaudi, B. S. Periodic Flux Variability of Stars due to the Reflex Doppler Effect Induced by
Planetary Companions. Astrophys. J. 588, L117–L120 (2003).

	Bloemen2010

	Bloemen, S. et al. Kepler observations of the beaming binary KPD 1946+4340. MNRAS 410, (2010).

	Barclay2012

	Barclay, T. et al. PHOTOMETRICALLY DERIVED MASSES AND RADII OF THE PLANET AND STAR IN THE TrES-2
SYSTEM. AspJ 761, 53 (2012).

	
pytransit.utils.phasecurves.ellipsoidal_variation_amplitude(mp: Union[float, numpy.ndarray], ms: Union[float, numpy.ndarray], a: Union[float, numpy.ndarray], i: Union[float, numpy.ndarray], u: Union[float, numpy.ndarray], g: Union[float, numpy.ndarray]) → Union[float, numpy.ndarray]

	The amplitude of the ellipsoidal variation signal.

Calculates the amplitude of the ellipsoidal variation signal following the approach described by
Lillo-Box et al. in [Lillo-Box2014], page 11.

	Parameters

	
	mp (float [https://docs.python.org/3/library/functions.html#float] or ndarray) – Planetary mass [MJup]

	ms (float [https://docs.python.org/3/library/functions.html#float] or ndarray) – Stellar mass [MSun]

	a (float [https://docs.python.org/3/library/functions.html#float] or ndarray) – Semi-major axis of the orbit divided by the stellar radius

	i (float [https://docs.python.org/3/library/functions.html#float] or ndarray) – Orbital inclination [rad]

	u (float [https://docs.python.org/3/library/functions.html#float] or ndarray) – Linear limb darkening coefficient

	g (float [https://docs.python.org/3/library/functions.html#float] or ndarray) – Gravity darkening coefficient

	Returns

	ev_amplitude – The amplitude of the ellipsoidal variation signal

	Return type

	float [https://docs.python.org/3/library/functions.html#float] or ndarray

References

	Lillo-Box2014

	Lillo-Box, J. et al. Kepler-91b: a planet at the end of its life. A&A 562, A109 (2014).

	
pytransit.utils.phasecurves.ellipsoidal_variation_signal(f: Union[float, numpy.ndarray], theta: Union[float, numpy.ndarray], e: float) → Union[float, numpy.ndarray]

	
	Parameters

	
	f – True anomaly [rad]

	theta – Angle between the line-of-sight and the star-planet direction

	e – Eccentricity

	
pytransit.utils.phasecurves.emission(tp: Union[float, numpy.ndarray], tstar: Union[float, numpy.ndarray], k: Union[float, numpy.ndarray], flt) → Union[float, numpy.ndarray]

	Thermal emission from the planet.

	Parameters

	
	tp (float [https://docs.python.org/3/library/functions.html#float] or ndarray) – Equilibrium temperature of the planet [K]

	tstar (float [https://docs.python.org/3/library/functions.html#float] or ndarray) – Effective temperature of the star [K]

	k (float [https://docs.python.org/3/library/functions.html#float] or ndarray) – Planet-star radius ratio

	flt (Filter) – Passband transmission

	Returns

	
	float or ndarray

	References

	
pytransit.utils.phasecurves.equilibrium_temperature(tstar: Union[float, numpy.ndarray], a: Union[float, numpy.ndarray], f: Union[float, numpy.ndarray], ab: Union[float, numpy.ndarray]) → Union[float, numpy.ndarray]

	Planetary equilibrium temperature [K].

	Parameters

	
	tstar – Effective stellar temperature [K]

	a – Scaled semi-major axis [Rsun]

	f – Redistribution factor

	ab – Bond albedo

	Returns

	Teq – Equilibrium temperature [K]

	Return type

	float [https://docs.python.org/3/library/functions.html#float] or ndarray

	
pytransit.utils.phasecurves.flux_ratio(tstar: Union[float, numpy.ndarray], a: Union[float, numpy.ndarray], f: Union[float, numpy.ndarray], ab: Union[float, numpy.ndarray], l: Union[float, numpy.ndarray], r: Union[float, numpy.ndarray] = 1.5, ti: Union[float, numpy.ndarray] = 0) → Union[float, numpy.ndarray]

	Total flux ratio per projected area element.

	Parameters

	
	tstar – Effective stellar temperature [K]

	a – Scaled semi-major axis [Rs]

	f – Redistribution factor

	ab – Bond albedo

	l – Wavelength [m]

	r – Inverse of the phase integral

	ti – Temperature [K]

	Returns

	fr – Total flux ratio

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
pytransit.utils.phasecurves.planck(t: Union[float, numpy.ndarray], l: Union[float, numpy.ndarray]) → Union[float, numpy.ndarray]

	Radiance of a black body as a function of wavelength.

	Parameters

	
	t – Black body temperature [K]

	l – Wavelength [m]

	Returns

	L – Back body radiance [W m^-2 sr^-1]

	Return type

	float [https://docs.python.org/3/library/functions.html#float] or ndarray

	
pytransit.utils.phasecurves.reflected_fr(a: Union[float, numpy.ndarray], ab: Union[float, numpy.ndarray], r: Union[float, numpy.ndarray] = 1.5) → Union[float, numpy.ndarray]

	Reflected flux ratio per projected area element.

	Parameters

	
	a – Scaled semi-major axis [Rsun]

	ab – Bond albedo

	r – Inverse of the phase integral

	Returns

	fr – Reflected flux ratio

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
pytransit.utils.phasecurves.solve_ab(fr, tstar, a, f, l, r=1.5, ti=0)

	Solve the Bond albedo.

	Parameters

	
	fr – Flux ratio [-]

	tstar – Effective stellar temperature [K]

	a – Scaled semi-major axis [Rs]

	A – Bond albedo [-]

	l – Wavelength [m]

	r – Inverse of the phase integral [-]

	ti – Temperature [K]

	Returns

	A

	Return type

	Bond albedo

	
pytransit.utils.phasecurves.solve_redistribution(fr, tstar, a, ab, l)

	Solve the redistribution factor.

	Parameters

	
	fr – Flux ratio [-]

	tstar – Effective stellar temperature [K]

	a – Scaled semi-major axis [Rs]

	ab – Bond albedo [-]

	l – Wavelength [m]

	r – Inverse of the phase integral [-]

	Ti (t) – Temperature [K]

	Returns

	f

	Return type

	Redistribution factor

	
pytransit.utils.phasecurves.solve_teq(fr, tstar, a, ab, l, r=1.5, ti=0)

	Solve the equilibrium temperature.

	Parameters

	
	fr – Flux ratio

	tstar – Effective stellar temperature [K]

	a – Scaled semi-major axis [Rs]

	ab – Bond albedo

	l – Wavelength [m]

	r – Inverse of the phase integral

	ti – Temperature [K]

	Returns

	Teq – Equilibrium temperature

	Return type

	float [https://docs.python.org/3/library/functions.html#float] or ndarray

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pytransit	

 	
 	
 pytransit.contamination	

 	
 	
 pytransit.lpf	

 	
 	
 pytransit.utils.phasecurves	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | O
 | P
 | Q
 | R
 | S
 | T
 | U

_

 	
 	__init__() (pytransit.GeneralModel method)

 	(pytransit.OblateStarModel method)

 	(pytransit.QuadraticModel method)

 	(pytransit.RoadRunnerModel method)

A

 	
 	absolute_flux() (pytransit.contamination.BBContamination static method)

 	(pytransit.contamination.SMContamination method)

 	absolute_fluxes() (pytransit.contamination.BBContamination method)

 	add_as_prior() (pytransit.lpf.BaseLPF method)

 	
 	add_ldtk_prior() (pytransit.lpf.BaseLPF method)

 	add_prior() (pytransit.lpf.BaseLPF method)

 	add_t14_prior() (pytransit.lpf.BaseLPF method)

 	apparent_radius_ratio() (in module pytransit.contamination)

 	apply_extinction (pytransit.contamination.SMContamination attribute)

B

 	
 	baseline() (pytransit.lpf.BaseLPF method)

 	BaseLPF (class in pytransit.lpf)

 	
 	BBContamination (class in pytransit.contamination)

 	BoxcarFilter (class in pytransit.contamination)

C

 	
 	ChromosphereModel (class in pytransit)

 	ClearFilter (class in pytransit.contamination)

 	contaminate_light_curve (in module pytransit.contamination)

 	
 	contamination() (pytransit.contamination.BBContamination method)

 	(pytransit.contamination.SMContamination method)

 	create_pv_population() (pytransit.lpf.BaseLPF method)

D

 	
 	doppler_boosting_alpha() (in module pytransit.utils.phasecurves)

 	
 	doppler_boosting_amplitude() (in module pytransit.utils.phasecurves)

E

 	
 	ellipsoidal_variation_amplitude() (in module pytransit.utils.phasecurves)

 	ellipsoidal_variation_signal() (in module pytransit.utils.phasecurves)

 	emission() (in module pytransit.utils.phasecurves)

 	equilibrium_temperature() (in module pytransit.utils.phasecurves)

 	evaluate() (pytransit.GeneralModel method)

 	(pytransit.OblateStarModel method)

 	(pytransit.QPower2Model method)

 	(pytransit.QuadraticModel method)

 	(pytransit.RoadRunnerModel method)

 	(pytransit.UniformModel method)

 	evaluate_ps() (pytransit.ChromosphereModel method)

 	(pytransit.GeneralModel method)

 	(pytransit.OblateStarModel method)

 	(pytransit.QPower2Model method)

 	(pytransit.QuadraticModel method)

 	(pytransit.RoadRunnerModel method)

 	(pytransit.UniformModel method)

 	
 	evaluate_pv() (pytransit.ChromosphereModel method)

 	(pytransit.GeneralModel method)

 	(pytransit.OblateStarModel method)

 	(pytransit.QPower2Model method)

 	(pytransit.QuadraticModel method)

 	(pytransit.RoadRunnerModel method)

 	(pytransit.UniformModel method)

F

 	
 	flux_model() (pytransit.lpf.BaseLPF method)

 	
 	flux_ratio() (in module pytransit.utils.phasecurves)

G

 	
 	GeneralModel (class in pytransit)

I

 	
 	Instrument (class in pytransit.contamination)

L

 	
 	lnlikelihood() (pytransit.lpf.BaseLPF method)

O

 	
 	OblateStarModel (class in pytransit)

P

 	
 	planck() (in module pytransit.utils.phasecurves)

 	plot_light_curves() (pytransit.lpf.BaseLPF method)

 	posterior_samples() (pytransit.lpf.BaseLPF method)

 	
 	pytransit.contamination (module)

 	pytransit.lpf (module)

 	pytransit.utils.phasecurves (module)

Q

 	
 	QPower2Model (class in pytransit)

 	
 	QuadraticModel (class in pytransit)

 	QuadraticModelCL (in module pytransit)

R

 	
 	reddening() (pytransit.contamination.SMContamination method)

 	reflected_fr() (in module pytransit.utils.phasecurves)

 	relative_flux() (pytransit.contamination.BBContamination static method)

 	(pytransit.contamination.SMContamination method)

 	relative_flux_mixture() (pytransit.contamination.SMContamination method)

 	
 	relative_fluxes() (pytransit.contamination.BBContamination method)

 	(pytransit.contamination.SMContamination method)

 	remove_outliers() (pytransit.lpf.BaseLPF method)

 	remove_transits() (pytransit.lpf.BaseLPF method)

 	residuals() (pytransit.lpf.BaseLPF method)

 	RoadRunnerModel (class in pytransit)

S

 	
 	set_data() (pytransit.ChromosphereModel method)

 	(pytransit.GeneralModel method)

 	(pytransit.OblateStarModel method)

 	(pytransit.QPower2Model method)

 	(pytransit.QuadraticModel method)

 	(pytransit.RoadRunnerModel method)

 	(pytransit.UniformModel method)

 	
 	set_radius_ratio_prior() (pytransit.lpf.BaseLPF method)

 	SMContamination (class in pytransit.contamination)

 	solve_ab() (in module pytransit.utils.phasecurves)

 	solve_redistribution() (in module pytransit.utils.phasecurves)

 	solve_teq() (in module pytransit.utils.phasecurves)

T

 	
 	TabulatedFilter (class in pytransit.contamination)

 	transit_model() (pytransit.lpf.BaseLPF method)

 	
 	trends() (pytransit.lpf.BaseLPF method)

 	true_radius_ratio() (in module pytransit.contamination)

U

 	
 	UniformModel (class in pytransit)

 	
 	UniformModelCL (in module pytransit)

 _images/math/c8967a260d9b2c97b3e22fcaa7c32458d021123c.png
(a/R,)

_images/math/d1caf8763867d89d7b0119550ce8a7a3bd94d9c4.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 PyTransit

 		
 Installation

 		
 Quickstart

 		
 Basic transit model evaluation

 		
 Transit Models

 		
 Transit model interface

 		
 Model initialisation

 		
 Data setup

 		
 Basics

 		
 Heterogeneous light curves

 		
 Multiple passbands

 		
 Supersampling

 		
 Advanced example

 		
 Model evaluation

 		
 OpenCL

 		
 Implemented transit models

 		
 Road Runner model

 		
 Uniform model

 		
 Quadratic model

 		
 Oblate star model

 		
 Power-2 model

 		
 General model

 		
 Chromosphere model

 		
 Log posterior functions

 		
 Main LPFs

 		
 Mixin classes

 		
 Advanced topics

 		
 Supersampling

 		
 Heterogeneous time series

 		
 API

 		
 Transit models

 		
 Road Runner model

 		
 Uniform model

 		
 OpenCL Uniform model

 		
 Quadratic model

 		
 OpenCL Quadratic model

 		
 Oblate star model

 		
 General model

 		
 QPower2 model

 		
 Chromosphere model

 		
 Log posterior functions

 		
 pytransit.contamination

 		
 Phase curves

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

